178 research outputs found

    Bayesian Inference of Gene Regulatory Network

    Get PDF
    Gene regulatory networks (GRN) have been studied by computational scientists and biologists over 20 years to gain a fine map of gene functions. With large-scale genomic and epigenetic data generated under diverse cells, tissues, and diseases, the integrative analysis of multi-omics data plays a key role in identifying casual genes in human disease development. Bayesian inference (or integration) has been successfully applied to inferring GRNs. Learning a posterior distribution than making a single-value prediction of model parameter makes Bayesian inference a more robust approach to identify GRN from noisy biomedical observations. Moreover, given multi-omics data as input and a large number of model parameters to estimate, the automatic preference of Bayesian inference for simple models that sufficiently explain data without unnecessary complexity ensures fast convergence to reliable results. In this chapter, we introduced GRN modeling using hierarchical Bayesian network and then used Gibbs sampling to identify network variables. We applied this model to breast cancer data and identified genes relevant to breast cancer recurrence. In the end, we discussed the potential of Bayesian inference as well as Bayesian deep learning for large-scale and complex GRN inference

    Applications of Different Weighting Schemes to Improve Pathway-Based Analysis

    Get PDF
    Conventionally, pathway-based analysis assumes that genes in a pathway equally contribute to a biological function, thus assigning uniform weight to genes. However, this assumption has been proved incorrect, and applying uniform weight in the pathway analysis may not be an appropriate approach for the tasks like molecular classification of diseases, as genes in a functional group may have different predicting power. Hence, we propose to use different weights to genes in pathway-based analysis and devise four weighting schemes. We applied them in two existing pathway analysis methods using both real and simulated gene expression data for pathways. Among all schemes, random weighting scheme, which generates random weights and selects optimal weights minimizing an objective function, performs best in terms of P value or error rate reduction. Weighting changes pathway scoring and brings up some new significant pathways, leading to the detection of disease-related genes that are missed under uniform weight

    Modeling and Reconstruction of Mixed Functional and Molecular Patterns

    Get PDF
    Functional medical imaging promises powerful tools for the visualization and elucidation of important disease-causing biological processes in living tissue. Recent research aims to dissect the distribution or expression of multiple biomarkers associated with disease progression or response, where the signals often represent a composite of more than one distinct source independent of spatial resolution. Formulating the task as a blind source separation or composite signal factorization problem, we report here a statistically principled method for modeling and reconstruction of mixed functional or molecular patterns. The computational algorithm is based on a latent variable model whose parameters are estimated using clustered component analysis. We demonstrate the principle and performance of the approaches on the breast cancer data sets acquired by dynamic contrast-enhanced magnetic resonance imaging

    Pseudogap and weak multifractality in disordered Mott charge-density-wave insulator

    Full text link
    The competition, coexistence and cooperation of various orders in low-dimensional materials like spin, charge, topological orders and charge-density-wave has been one of the most intriguing issues in condensed matter physics. In particular, layered transition metal dichalcogenides provide an ideal platform for studying such an interplay with a notable case of 1T{T}-TaS2_{2} featuring Mott-insulating ground state, charge-density-wave, spin frustration and emerging superconductivity together. We investigated local electronic states of Se-substituted 1T{T}-TaS2_{2} by scanning tunneling microscopy/spectroscopy (STM/STS), where superconductivity emerges from the unique Mott-CDW state. Spatially resolved STS measurements reveal that an apparent V-shape pseudogap forms at the Fermi Level (EF_{F}), with the origin of the electronic states splitting and transformation from the Mott states, and the CDW gaps are largely preserved. The formation of the pseudogap has little correlation to the variation of local Se concentration, but appears to be a global characteristics. Furthermore, the correlation length of local density of states (LDOS) diverges at the Fermi energy and decays rapidly at high energies. The spatial correlation shows a power-law decay close to the Fermi energy. Our statistics analysis of the LDOS indicates that our system exhibits weak multifractal behavior of the wave functions. These findings strongly support a correlated metallic state induced by disorder in our system, which provides an new insight into the novel mechanism of emerging superconductivity in the two-dimensional correlated electronic systems

    Nonrigid Medical Image Registration by Finite-Element Deformable Sheet-Curve Models

    Get PDF
    Image-based change quantitation has been recognized as a promising tool for accurate assessment of tumor's early response to chemoprevention in cancer research. For example, various changes on breast density and vascularity in glandular tissue are the indicators of early response to treatment. Accurate extraction of glandular tissue from pre- and postcontrast magnetic resonance (MR) images requires a nonrigid registration of sequential MR images embedded with local deformations. This paper reports a newly developed registration method that aligns MR breast images using finite-element deformable sheet-curve models. Specifically, deformable curves are constructed to match the boundaries dynamically, while a deformable sheet of thin-plate splines is designed to model complex local deformations. The experimental results on both digital phantoms and real MR breast images using the new method have been compared to point-based thin-plate-spline (TPS) approach, and have demonstrated a significant and robust improvement in both boundary alignment and local deformation recovery

    Identifying cancer biomarkers by network-constrained support vector machines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major goals in gene and protein expression profiling of cancer is to identify biomarkers and build classification models for prediction of disease prognosis or treatment response. Many traditional statistical methods, based on microarray gene expression data alone and individual genes' discriminatory power, often fail to identify biologically meaningful biomarkers thus resulting in poor prediction performance across data sets. Nonetheless, the variables in multivariable classifiers should synergistically interact to produce more effective classifiers than individual biomarkers.</p> <p>Results</p> <p>We developed an integrated approach, namely network-constrained support vector machine (netSVM), for cancer biomarker identification with an improved prediction performance. The netSVM approach is specifically designed for network biomarker identification by integrating gene expression data and protein-protein interaction data. We first evaluated the effectiveness of netSVM using simulation studies, demonstrating its improved performance over state-of-the-art network-based methods and gene-based methods for network biomarker identification. We then applied the netSVM approach to two breast cancer data sets to identify prognostic signatures for prediction of breast cancer metastasis. The experimental results show that: (1) network biomarkers identified by netSVM are highly enriched in biological pathways associated with cancer progression; (2) prediction performance is much improved when tested across different data sets. Specifically, many genes related to apoptosis, cell cycle, and cell proliferation, which are hallmark signatures of breast cancer metastasis, were identified by the netSVM approach. More importantly, several novel hub genes, biologically important with many interactions in PPI network but often showing little change in expression as compared with their downstream genes, were also identified as network biomarkers; the genes were enriched in signaling pathways such as TGF-beta signaling pathway, MAPK signaling pathway, and JAK-STAT signaling pathway. These signaling pathways may provide new insight to the underlying mechanism of breast cancer metastasis.</p> <p>Conclusions</p> <p>We have developed a network-based approach for cancer biomarker identification, netSVM, resulting in an improved prediction performance with network biomarkers. We have applied the netSVM approach to breast cancer gene expression data to predict metastasis in patients. Network biomarkers identified by netSVM reveal potential signaling pathways associated with breast cancer metastasis, and help improve the prediction performance across independent data sets.</p
    corecore